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THE NEED FOR INTELLIGENT FLIGHT CONTROL

Many fatal aircraft accidents appear to be the result of a misuse of informa-
tion, knowledge, or capability. For instance, a pilot depends on instruments for
accurate aircraft status information. Inaccurate or partial information deprives
the pilot of the resources necessary to safely operate the aircraft, and thus
constitutes a misuse of information. Similarly, negligence or inexperience on
the part of the pilot represents a misuse of knowledge. Finally, modern generic
jet aircraft have highly redundant control effectors. As a result, it may be
possible to counterbalance the effect of a failed primary control effector, such
as an aileron, with a secondary control effector, such as a trailing-edge flap.

If an aircraft is controllable following a failure, but through a lack of informa-
tion, knowledge, or ability the pilot fails to contrel it, this represents a
misuse of capability.

FATAL ACCIDENTS OF U.S. SCHEDULED AIR CARRIERS, 1961-1979

® REVERSE THRUST WARNING LIGHT MALFUNCTION
® [ANDING GEAR WARNING LIGHT MALFUNCTION
@ LO0SS OF ELECTRICAL SYSTEM TO ATTITUDE INSTRUMENTS

® TURBULENCE, AIRFRAME FAILURE IN FLIGHT
HYDRAULIC PRESSURE LOSS UNCORRECTED BY PILOT

HYDRAULIC SYSTEM DEGRADATION
RUDDER SUPPORT MATERIAL FAILURE
RUDDER CONTROL SYSTEM MALFUNCTION
FLIGHT CONTROL SYSTEM FAILURE

FAILURE OF ENGINE PYLON
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RESEARCH OBJECTIVES

The objective of this research is to use artificial intelligence techniques,
along with statistical hypothesis testing and modern control theory, to help the
pilot cope with the issues of information, knowledge, and capability in the event
of a failure. We are developing an "intelligent" flight control system which
utilizes knowledge of cause-and-effect relationships between all aircraft com-
ponents. It will screen the information available to the pilot, supplement his
knowledge, and most importantly, utilize the remaining flight capability of the
aircraft following a failure. The list of failure types the control system will
accommodate includes sensor failures, actuator failures, and structural failures.

PURPOSE

o T0 INVESTIGATE THE POSSIBLE CONTRIBUTION OF ARTIFICIAL
INTELLIGENCE TECHNIQUES TO AIRCRAFT FAILURE DETECTION,
IDENTIFICATION, AND RECONFIGURATION (FDIR)

MOTIVATION

o MOST EXISTING FDIR SCHEMES CAN HANDLE ONLY A SUBSET OF
ALL POSSIBLE AIRCRAFT FAILURES

o FEW EXISTING FDIR SCHEMES INCORPORATE HUMAN-LIKE COMMON
SENSE OR KNOWLEDGE RELATING ALL AIRCRAFT COMPONENTS

o REDUNDANCY IN MODERN AIRCRAFT MAY PERMIT RECOVERY FROM
SEVERE FATLURES

64




ASSUMPTIONS

In order to adapt to significant

of the aircraft, the control system must have a variable structure.

failure-induced changes in the configuration
A fly-by-wire

flight control system can be reconfigured by supplying new mathematical models and

gains to the computer, thus a control

system of this form is assumed. Note that the

pilot flies the aircraft via the flight computer and has no direct link to the con-

trol surfaces.
and gains corresponding to the actual
failure will significantly change the
knowledge-based reconfigurable flight
failure model with the correct model.

It is essential, therefore, that the flight computer have the model

aircraft configuration. Assuming that a
configuration, it will be the job of the
control system (KBRFCS) to replace the pre-

BASIC FLY-BY-WIRE FLIGHT CONTROL SYSTEM
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A PROCEDURE FOR INTELLIGENT FAILURE MANAGEMENT

One method of dealing with the problem of failure detection, identification,
and reconfiguration (FDIR) is the following. The KBRFCS supervises aircraft behavior
until some abnormality occurs, at which time a failure alert is given. The system
then allocates its resources to best serve the problem-solving process. This will
be important if implementation requires a multi-microprocessor environment. Next,
the system tries to diagnose exactly what has failed. Concurrently, immediate and
temporary measures are taken to help reduce the effect of the failure during diag-
nosis. An example of such compensation would be the deflection of a flap to offset
a sudden, unexplained roll. When the failure is identified, the best control con-
figuration given the present circumstances is chosen and reconfiguration begins.
Finally, the new control scheme is implemented.
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FAILURE DETECTION AND DIAGNOSIS PROBLEMS

The easiest way to detect and identify a sensor failure is to compare three
sensors which measure the same quantity. Such a triplex system can be very expen-
sive, however. 1In the less expensive duplex system a failure is easy to detect but
hard to identify. Functional redundancy between unique sensors can be exploited to
further reduce costs. For example, a rate gyro and an accelerometer can each provide
pitch rate information; therefore, the signals can be compared to detect a failure
in one of the two components. Although seemingly straightforward, these FDI tech-
nigues can run into problems. Consider a triplex system in which two of the sensors
are powered from one electrical source and the third sensor from a different source.
If the triplex FDI scheme identified a failure by singling out the one sensor which
differed from the other two, a power failure to the first two sensors would be mis-
construed as a failure of the third. This brings up the need for the incorporation
of intelligence into the failure diagnosis process, an intelligence which will
recognize when such "higher-order" relations among different elements of the air-
craft exist.
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SOME EXISTING FAILURE DETECTION AND DIAGNOSIS SOLUTIONS

When the attempt is made to detect and diagnose all types of failures, not
simply sensor failures, it is necessary to use all the analytical redundancy avail-
able. The generalized likelihood ratio (GLR) method and the multiple model (MM)
method are two algorithms which use this redundancy to choose, from a finite set of
alternatives, the mathematical model which best predicts the actual aircraft
behavior. In FDI the set of alternatives would be the set of failures one hopes
to detect and identify. The GLR method is well suited to failure detection, while
the MM method is more effective at failure identification. Therefore, one way to
accomplish FDIR would be to first detect a failure with the GLR, then run the MM
algorithm to choose the proper model from the set of all possible failure models.

GENERALIZED LIKELIHOOD RATIO (GLR) METHOD

Basts

DIFFERENT ABRUPT CHANGES PRODUCE DIFFERENT EFFECTS ON FILTER INNOVATIONS
ADVANTAGES
o LIKELIHOOD CALCULATIONS BASED ON SINGLE NOMINAL KALMAN FILTER

o WITH MAGNITUDE OF FAILURE KNOWN, SIMPLIFIED GLR (SGLR) RESULTS IN VERY
LOW COMPUTATIONAL LOAD

o EFFECTIVELY DETECTS ABRUPT CHANGES

DISADVANTAGES

® ACCOMMODATES ADDITIVE EFFECTS ON SINGLE NOMINAL MODEL ONLY

MULTIPLE MODEL (MM) METHOD

OPERATION

o 0BSERVE U(K) aND Y(k)
¢ (HOOSE MOST LIKELY MODEL FROM FINITE SET OF HYPOTHESES

o RECURSIVE PROBABILITY FORMULA FROM BAves’ RuLE

ADVANTAGES

o ALLOWS PARAMETRIC AS WELL AS ADDITIVE CHANGES
o CoMPARES MODELS OF DIFFERENT ORDER

o ROBUST TO NON-GAUSSIAN STATISTICS

DISADVANTAGES

¢ HIGH COMPUTATIONAL BURDEN
o Bank oF KaLman FILTERS
® SWITCH DETECTION REQUIRES GROWING NUMBER OF FILTERS

® SLOW RESPONSE TO MODEL SWITCHES
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AN ALTERNATE SOLUTION

The KBRFCS will be expected to handle many types of failures. Each failure
will change the aircraft configuration in a unique way and will therefore have a
unique model associated with it. If the previously mentioned FDIR scheme is
employed, the MM algorithm will be required to choose from among thousands of
models. Although this may be a theoretically feasible solution, it will require
an immense amount of computing power. Our goals include eventual implementation
and flight testing of the control system, and computer resources must be kept to a
minimum. If there was a way to let the MM algorithm test only those models corre-
sponding to failures which are most likely under the circumstances, the required
computer speed could be drastically reduced. In the KBRFCS, this important diag-
nostic tool takes the form 6f an expert system.
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THE EXPERT SYSTEM

The job of the expert system is to narrow down to a reasonable number the list
of possible failures to be tested by the MM algorithm. When a sensor value goes
beyond a prespecified warning level, or if it jumps too gquickly, or if a state or
observation bias jump is picked up by the GLR, a failure is detected and this
information is passed on to the expert system. With knowledge of the cause-and-
effect relationships among all aircraft components and common-sense failure
diagnosis rules, the expert system decides which failures are most likely to have

occurred.
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THE GLOBAL DATA BASE AND THE RULES

The aircraft relational knowledge is contained in the global data base. The
rules combine this knowledge with heuristic, common-sense reasoning to diagnose a

failure. The following example illustrates the type of rules the expert system
contains.
Rule If a sensor (such as an aileron position sensor) has exceeded its

#1

expected value and that sensor senses an
and no states (including roll rate) have

effector (such as an aileron)
exceeded their expected values

then - a sensor failure is likely and an
sensor) failure is likely.

electrical support (for that

Rule
#2

If a sensor has exceeded its expected value and that sensor senses an
effector and that effector strongly effects a state which has exceeded
its expected value

then - an effector failure is likely.

These rules show how the expert system can distinguish between a failed effector
which is sensed and a failed sensor.
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KNOWLEDGE-BASED RECONFIGURABLE FLIGHT CONTROL SYSTEM

Although the expert system contains many rules, only a small number of them
will be pertinent to a given failure at a given point in the diagnostic process.
For example, if a failure is detected and no state bias jumps were observed by the
GLR test, the expert system should not waste time testing rules which depend on the
existence of a state bias jump in order to be true.
vide the control structure needed to select the appropriate rules to be tested.
With the expert system complete, the KBRFCS becomes an intelligent and valuable
mechanism capable of accommodating failures that a pilot may not be able to handle

alone.
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RESEARCH WORK SCHEDULE

THEORETICAL DEVELOPMENT
NoMminAL MoDEL SELECTION
FAILURE SET GENERATION

GAIN CALCULATION

KNOWLEDGE GENERATION THRoUGH GLR, SGLR,
AND MM TESTING

GENERAL RULE DEVELOPMENT
GLOBAL DATA BASE DEVELOPMENT
SPECIFIC RULE DEVELOPMENT
RULE INTERPRETER DEVELOPMENT

MULTI-MICROPROCESSOR SIMULATION




